最終報告書

モノブチルアミン [tert-ブチルアミン (被験物質番号 K-1377) にて試験実施] の 微生物による分解度試験

(試験番号:21377)

陳 述 書

財団法人 化学品 検査協会
化学品安全センター久留米研究所

試験委託者 通商産業省

試験の表題 モノブチルアミン [tert-ブチルアミン(被験物質番号 K-1377) に

て試験実施]の微生物による分解度試験

試験番号 21377

上記試験は、「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設について」(環保業第39号、薬発第229号、59基局第85号、昭和59年3月31日、昭和63年11月18日改正)及び「OECD Principles of Good Laboratory Practice」(May 12, 1981)に従って実施したものです。

1999年10月28日

運営管理者

信頼性保証書

財団法人 化学品検査協会
化学品安全センター外留米研究所

試験委託者

通商産業省

試験の表題

モノブチルアミン [tert-ブチルアミン(被験物質番号 K-1377) に

て試験実施] の微生物による分解度試験

試験番号

21377

上記試験は財団法人化学品検査協会化学品安全センター久留米研究所の信頼性保証部門が 監査及び査察を実施しており、監査又は査察を行った内容、日付並びに試験責任者及び運営管理者 に報告を行った日付は以下の通りです。

監査又は査察内容	監査又は査察日	報告日(試験責任者)	報告日(運営管理者)
試験計画書	1999 年 8月27日	1999 年 8 月 27 日	1999 年 8 月 27 日
試験実施状況	1999年 9月2日	1999 年 9 月 2 日	1999 年 9 月 2 日
	1999年 9月16日	1999年10月1日	1999 年 10 月 1 日
	1999 年 9月30日	1999年10月1日	1999年10月1日
生テ、一タ及び最終報告書	1999年10月27日	1999 年 10 月 27 日	1999年10月27日

本最終報告書は、試験の方法が正確に記載されており、内容が試験計画及び標準操作手順に従い、かつ、生データを正確に反映していることを保証します。

1999年10月27日

信頼性保証部門責任者」

目 次

			頁
	表 題		1
	試験委託者		1
	試 験 施 設		1
	試験目的		1
	試 験 法		1
	適用GLP		1
	試 験 日 程		2
	試資料の保管		2
	試験関係者		2
	最終報告書の作成	······································	2
	要 約		3
1.	被験物質		4
2.	活性汚泥		6
3.	分解度試験の実施		7
4.	試験条件の確認		15
5.	試験成績の信頼性	に影響を及ぼしたと思われる環境要因	15
6.	試験結果		15
7.	備考		17

表 題 モノブチルアミン [tert-ブチルアミン(被験物質番号 K-1377) にて試験実施]の微生物による分解度試験

試験委託者 通商産業省

(〒100-8901) 東京都千代田区霞が関一丁目3番1号

試験施設 財団法人 化学品検査協会 化学品安全センター久留米研究所 (〒830-0023) 福岡県久留米市中央町 19-14

試験目的 K-1377の微生物による分解性の程度について知見を得る。

試験法 「新規化学物質等に係る試験の方法について」(環保業第5号、薬 発第615号、49基局第392号、昭和49年7月13日)に規定する〈微生物等による化学物質の分解度試験〉及び「OECD Guidelines for Testing of Chemicals」に定める"Ready Biodegradability: 301C、Modified MITI Test (I) (July 17, 1992)"に準拠した。

適 用 G L P (1) 化学物質GLP

「新規化学物質に係る試験及び指定化学物質に係る有害性の調査の項目等を定める命令第4条に規定する試験施設について」 (環保業第39号、薬発第229号、59基局第85号、昭和59年3月31日、昭和63年11月18日改正)を適用した。

(2) OECD-GLP

「OECD Principles of Good Laboratory Practice」(May 12, 1981)を適用した。

試験日程

î	試 験	閉	始	Ħ	1999年 8月27日
Ī	试 験 液	培養	開始	Ħ	1999年 9月 2日
Ĩ	試 験 液	培養	終了	B	1999年 9月30日
Ī	銭 践	終	了	日	1999年10月14日

試資料の保管

(1) 被験物質

被験物質約5gを保管用容器に入れ密栓後、安定に保存しうる期間、当研究所試料保管室に保管する。

(2) 生データ、資料等

試験により得られた分析結果、測定結果、観察結果、その他試験ノート等最終報告書の作成に用いた生データ、試験計画書、指示書、資料等は最終報告書の写しと共に、試験委託者から通知を受けるまでの期間、当研究所資料保管室に保管する。

試験関係者

試	験	責	任	者	
4.5	₩.	de la		. بيد	
試	験	担	当	者	
活性	污渍	已管理	里實在	Ł者	

最終報告書の作成

武 験 責 任 者 1999年/0月14日 氏 名

要 約

試験の表題

モノブチルアミン [tert-ブチルアミン (被験物質番号 K-1377) にて試験実施]の 微生物による分解度試験

試験条件

(1) 被験物質濃度 100mg/L

(2) 活性汚泥濃度 30mg/L (懸濁物質濃度として)

(3) 試験液量 300mL(4) 試験液培養温度 25±1℃

(5) 試験液培養期間 28日間

測定及び分析

- (1) 閉鎖系酸素消費量測定装置による生物化学的酸素要求量(B00)の測定
- (2) 全有機炭素分析法 (TOC) による溶存有機炭素の分析
- (3) 高速液体クロマトグラフィー (HPLC) による被験物質の分析

試験結果

(1)	BODによる分解度	0%,	0%,	0%	平均	0%
(2)	TOCによる分解度	0%,	0%,	0%	平均	0%
(3)	HPLCによる分解度	0%,	0%,	0%	平均	0%

1. 被験物質

本報告書においてK-1377は、次の名称等を有するものとする。

- 1.1 名 称 tert-ブチルアミン
- 1.2 構造式等

構造式

分子式 C4HinN

分子量 73.14

- 1.3 入手先、商品名、等級及びロット番号*1
 - (1) 入 手 先
 - (2) 商品名
 - (3) 等級
 - (4) ロット番号

- 4) by hard notice
- *1 入手先添付資料による。
- 1.4 純 度*1

被験物質 99.7%

被験物質は純度100%として取り扱った。

1.5 被験物質の確認

に記載の赤外吸収スペクトルと当研究所において測定したスペクトルが一致することを確認した(Fig.5参照)。また、質量スペクトル(Fig.6参照)及び核磁気共鳴スペクトル(Reference 1参照)についても測定を行い、構造を確認した。

- 1.6 保管条件及び保管条件下での安定性
 - (1) 保管条件 冷蔵保存
 - (2) 安定性確認 試験液培養開始前及び培養終了後に被験物質の赤外吸収スペクトルを測定した結果、両スペクトルは一致し、保管条件下で安定であることを確認した(Fig. 5参照)。

- 2. 活 性 汚 泥
- 2.1 汚泥の採集場所及び時期
 - (1) 場 所 以下の全国10ヵ所から採集した。

伏古川処理場(北海道札幌市) 中浜処理場(大阪府大阪市) 北上川(宮城県石巻市) 吉野川(徳島県徳島市)

広島湾 (広島県広島市)

鹿島処理場 (茨城県鹿島郡) 落合処理場 (東京都新宿区) 信濃川 (新潟県西蒲原郡) 琵琶湖 (滋賀県大津市) 洞海湾 (福岡県北九州市)

(2) 時期 1999年6月

2.2 採集汚泥

(1) 下水処理場

返送汚泥

(2) 河川、湖沼及び海

表層水及び大気と接触している波打際の表土

2.3 活性汚泥の調製

活性汚泥の均一性を保つため、上記で採集してきた各地の汚泥混合液のろ液5Lと、約3ヶ月間培養した活性汚泥*²のろ液5Lとを混合して10Lとし、pHを7.0±1.0に調整して培養槽でばっ気*³した。

- *2 上記で採集してきた各地の汚泥混合液のろ液10Lを、下記2.4に従って培養した 活性汚泥。
- *3 屋外空気をプレフィルターに通し、ばっ気に用いた、

2.4 培 養

培養槽へのばっ気を約30分間止めた後、全量の約1/3量の上澄液を除去した。これに脱塩素水を加え全量を10Lにして再びばっ気し(30分間以上)、添加した脱塩素水中での合成下水濃度が0.1wt%になるように50g/L合成下水**を添加した。この操作を毎日1回繰り返し、培養して活性汚泥とした。培養温度は25±2℃とした。

*4 グルコース、ペプトン、りん酸二水素カリウムをそれぞれ50g/Lになるように脱塩素水に溶解し、水酸化ナトリウムでpHを7.0±1.0に調整した。

2.5 管理及び使用

活性汚泥の正常な状態を維持するため、培養中、上澄液の外観及び活性汚泥の生成状態を観察するとともに、沈でん性が優れていること、pH、温度及び溶存酸素濃度を測定し、管理基準(「新規化学物質等に係る試験の方法について」参照)の範囲内であることを確認した。この結果を生データとして保管した。活性汚泥の生物相は適宜光学顕微鏡を用いて観察し、異常のないことを確認した上で試験に供した。

2.6 活性汚泥の活性度の点検及び使用開始日

- (1) 活性汚泥の活性度の点検 標準物質を用いて活性汚泥使用開始前に活性度を点検した。
- (2) 活性汚泥使用開始日 1999年 7月13日

3. 分解度試験の実施

3.1 試験の準備

(1) 活性汚泥の懸濁物質濃度の測定

活性汚泥の添加量を決定するために、懸濁物質濃度を測定した。

測定方法

「工場排水試験方法、懸濁物質」(JIS K 0102-1998 の

14.1) に準じて行った。

測定実施日

1999年 8月30日

測定結果

- 活性汚泥の懸濁物質濃度は5700mg/Lであった。

(2) 基礎培養基の調製

「工場排水試験方法,生物化学的酸素消費量」(JIS K 0102~1998 の 21.)で定められたA液、B液、C液及びD液それぞれ3mLに精製水(高杉製薬製 日本薬局方)を加えて1Lとする割合で混合し、pHを7.0に調整した。

(3) 基準物質

試験の実施には汚泥が十分な活性度を有することを確認するため、基準物質としてアニリン(昭和化学製 試薬特級 ロット番号 IIK-2732D)を用いた。

3.2 試験液の調製

試験容器を6個用意し、試験液を下記の方法で調製した。 これらの試験液について、3.3の条件で培養を行った。

(1) 被験物質及びアニリンの添加

(a) (水+被験物質)系(1個,試験容器5)

試験容器に精製水300mLを入れ、被験物質濃度が100mg/Lになるように被験物質をマイクロシリンジで43.0μL [添加量29.8mg=43.0μL×0.693g/cm³(密度)] 分取し、添加してpHを測定した。

(b) (汚泥+被験物質) 系 (3個, 試験容器 2 3 4)

試験容器に基礎培養基 [300mLから活性汚泥添加液量 (1.58mL) を差し引いた量]を入れ、被験物質濃度が100mg/Lになるように被験物質をマイクロシリンジで 43.0μ L [添加量29.8mg= 43.0μ L×0.693g/cm³ (密度)]分取し、添加してpHを測定し、pIIを 7.0 ± 0.2 に調整した。

(c) (汚泥+アニリン)系(1個,試験容器1)

試験容器に基礎培養基 [300mLから活性汚泥添加液量(1.58mL)を差し引いた量]を入れ、アニリンを100mg/Lになるようにマイクロシリンジで29.5 μ L[添加量30mg=29.5 μ L×1.022g/cm³(密度)] 分取して添加した。

(d) 汚泥ブランク系 (1個, 試験容器 6)

試験容器に基礎培養基[300mLから活性汚泥添加液量(1.58mL)を差し引いた量]を入れた。

(2) 活性汚泥の接種

(b), (c) 及び(d)の試験液に2. の条件で調製した活性汚泥を懸濁物質濃度として30mg/Lになるように接種した。

- 3.3 試験液培養装置及び環境条件
 - (1) 試験液培養装置

閉鎖系酸素消費量測定装置

クーロメーター 旭テクネイオン製 データ処理装置 旭テクネイオン製

武 験 容 器

300mL用培養瓶

炭酸ガス吸収剤

ソーダライム, Na.1

(和光純薬工業製 二酸化炭素吸収用)

(2) 環境条件

試験液培養温度

25±1℃

試験液培養期間

28日間

撹 拌 方 法

マグネチックスターラーによる回転撹拌

(3) 実施場所

511クーロ室

- 3.4 観察、測定等
 - (1) 観察

培養期間中、試験液の状況を毎日目視観察した。また、装置の作動状況を適 宜点検した。

(2) 生物化学的酸素要求量 (BOD) の測定

培養期間中、試験液のBODの変化を連続的にデータ処理装置で自動記録して測定した。また、構内温度は毎日測定記録した。

3.5 試験液の分析

培養期間終了後、試験液中に残留している溶存有機炭素及び被験物質について分析した。なお、(水+被験物質)系及び(汚泥+被験物質)系の試験液のpHを測定した。

3.5.1 試験液の前処理

試験液培養期間終了後、(水+被験物質)系、(汚泥+被験物質)系及び汚泥 ブランク系の試験液について以下のフロースキームに従って前処理操作を行い、 溶存有機炭素 (DOC) を分析するための全有機炭素分析法 (TOC) 試料とし、被験 物質を分析するための高速液体クロマトグラフィー (HPLC) 試料とした。

フロースキーム 試験液 300ml. ・分取 10mL (メスピペット) ・遠心分離(1000×g, 10分間) 上澄液 ・分取 0.5mL (ホールピペット) TOC試料 ←0.1mo]/L炭酸水素ナトリウム溶液 1mL (ホールビペット) ←1g/Lダンシルクロリド*5-アセトン溶液 1mL (ホールピペット) ・加温 (ウォーターバス,約60℃,30分間) ・冷却(水中、約1分間) ・定容 100mL (アセトニトリル/精製水 (1/1 V/V), メスフラスコ) HPLC試料

*5 5-ジメチルアミノ-1-ナフタレンスルホニルクロリド

3.5.2 定量分析

(1) 全有機炭素分析法による溶存有機炭素の分析

前処理を行って得られたTOC試料について、下記の定量条件に基づきDOCを分析した。

試験液のDOC濃度は、全有機炭素計内のデータ処理装置により、全炭素(TC) 標準溶液80.0mgC/L及び無機炭素(IC)標準溶液80.0mgC/Lのピーク面積を測定 してそれぞれの検量線を設定し、TOC試料のDOCを測定して求めた(Table-2参照)。 なお、TC標準溶液はフタル酸水素カリウム(和光純薬工業製 等級 試薬特級) を精製水に溶解し、IC標準溶液は炭酸水素ナトリウム(和光純薬工業製 等級 試薬特級)及び炭酸ナトリウム(和光純薬工業製 等級 試薬特級)を精製水 に溶解して調製した。

定量下限濃度はDOC濃度1.0mgC/Lとした。

定量条件

機	111	全有機炭素計	
		島津製作所製 T	OC-5000
T C 炉 温	度	680℃	
流	量	150mL/min	
注 入	量	33μ L	
感	度	レンジ 5	

(2) 高速液体クロマトグラフィーによる被験物質の分析

前処理を行って得られたHPLC試料について、下記の定量条件に基づき被験物質を分析した。HPLC試料中の被験物質の濃度は、クロマトグラム上で得られた標準溶液0.606mg/Lのピーク面積とHPLC試料のピーク面積とを比較し、比例計算して求めた(Table-3、Fig.3参照)。

ピーク面積の定量下限は、ノイズレベルを考慮して $30000\mu V$ ・sec(被験物質 濃度0.0098mg/L)とした。

(a) 定量条件

機		器	高速液体クロマトグラフ
	ボーン	プ	島津製作所製 LC-10AD
	検 出	***	日本分光製 820-FP
カ	ラ	٨	L-column ODS
			15cm×4.6mml.D. ステンレス製
溶	離	液	アセトニトリル/精製水/りん酸
			(70/30/0.03 V/V/V)
流		量	1.0mL/min
励	起波	長	370nm
測	定 波	長	520nm
注	入		10µľ.
検	出器出	カ	1V/FS

(b) 標準溶液の調製

分析試料中の被験物質濃度を求めるための標準溶液の調製は次のように行った。

被験物質35.0μL [被験物質24.3mg=35.0μL×0.693g/cm³ (密度)] 分取し、精製水に溶解して1210mg/Lの被験物質溶液を調製した。これを精製水で希釈して121mg/Lの被験物質溶液とし、以下のフロースキームに従って0.606mg/Lの標準溶液を調製した。

121mg/L被験物質溶液 0.5ml.

- ←0.1mol/L炭酸水素ナトリウム溶液 1mL (ホールピペット)
- ←1g/Lダンシルクロリド*5-アセトン溶液 1mL (ホールピペット)
- ・加温 (ウォーターバス, 約60℃, 30分間)
- ·冷却(水中,約1分間)
- ・定容 100mL (アセトニトリル/精製水 (1/1 V/V), メスフラスコ)

0.606mg/L標準溶液

(c) 検量線の作成

(b)の標準溶液の調製と同様にして30.3、60.6及び121mg/Lの被験物質溶液を調製し、上記フロースキームに従って前処理を行い0.152、0.303及び0.606mg/Lの標準溶液を調製した。これらを(a)の定量条件に従って分析し、得られたそれぞれのクロマトグラム上のピーク面積と濃度により検量線を作成した(Fig. 2参照)。

3.6 分解度の算出

被験物質の分解度は下記の式に基づき算出し、小数点以下1ケタ目を丸めて整数位で表示した。

(1) BODによる分解度

BOD : (汚泥+被験物質) 系の生物化学的酸素要求量

(測定値) (mg)

B: 汚泥ブランク系の生物化学的酸素要求量

(測定値) (mg)

TOD*6: 被験物質が完全に酸化された場合に必要とされる

理論的酸素要求量(計算值) (mg)

*6 純度100%として計算した。

(2) TOCによる分解度

分解度 (%) =
$$\frac{DOCw - DOCs}{DOCw} \times 100$$

DOCs : (汚泥+被験物質) 系における溶存有機炭素の残留量

(測定値) (mgC)

DOCw: (水土被験物質)系における溶存有機炭素の残留量

(測定值) (mgC)

(3) HPLCによる分解度

分解度 (%) =
$$\frac{Sw - Ss}{Sw} \times 100$$

Ss : (汚泥+被験物質)系における被験物質の残留量

(測定値) (mg)

Sw: (水+被験物質) 系における被験物質の残留量

(測定値) (mg)

3.7 数値の取扱い

数値の丸め方は、JIS Z 8202-1985 参考3規則Bに従った。

4. 試験条件の確認

BODから求めたアニリンの7日及び14日後の分解度はそれぞれ41%及び68%であることから、本試験の試験条件が有効であることを確認した(Table-1、Fig. 1参照)。

5. 試験成績の信頼性に影響を及ぼしたと思われる環境要因

当該要因はなかった。

6. 試験結果

6.1 試験液の状況

試験液の状況は下記のとおりであった。

	試 験 液	状 祝	pli
培養開始時	(水 +被験物質)系	被験物質は溶解した。	<u>5</u> 10.7
	(汚泥+被験物質)系	被験物質は溶解した。	2 9. 8→7. 1 3 9. 8→7. 1 4 9. 8→7. 1
培養終了時	(水 +被験物質)系	不溶物は認められなかった。	5 10. 5
	(汚泥+被験物質) 系	汚泥以外の不溶物は認められなかった。 汚泥の増殖は認められなかった。	2 7. 3 3 7. 3 4 7. 4

6.2 試験液の分析結果

28日後の分析結果は下記のとおりであった。

		(木+黃鷺 物質)系 (汚泥+被験物質)系			理論量	Table	Fig	
		5	2	3	4		rabie	, 1 5
B0D*7	mg	0	0	0	0	101.0	I	1
DOC残留量及	mgC	19. 2	20. 1	19. 9	19.8	19. 6	2	
び残留率*7	%	98	103	102	101	_		_
被験物質残留 量及び残留率	mg	30. 1	30. 5	30.6	30.8	29.8	3	2
重及い残留率 (HPLC)	%	101	102	103	103	_	3	3

*7 (汚泥+被験物質)系は、汚泥ブランク系の値を差し引いて表示した。

6.3 分解度

28日後の分解度は下記のとおりであった。

		Table			
	2	3	4	平均	table
BODによる結果	0	0	0	0	1
TOCによる結果	0	0	0	0	2
HPLCによる結果	0	0	0	0	3

7. 備 考

7.1 試験に使用した主要な装置・機器

閉鎖系酸素消費量測定装置 : 9頁参照

全有機炭素計: 11頁参照高速液体クロマトグラフ: 12頁参照

分光蛍光光度計 : 日立製作所製 F-2000

フーリエ変換赤外分光光度計 : 島津製作所製 FTIR-8200PC

ガスクロマトグラフー質量分析計

: 日本電子製 JMS-700QQ

高速液体クロマトグラフー質量分析計

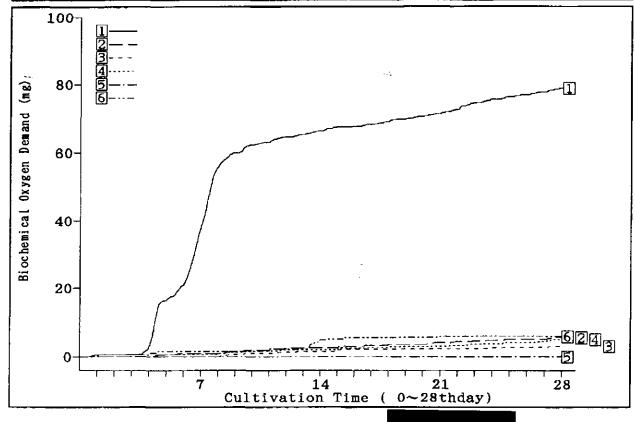
; マイクロマス社製 QuattroⅡ

pH計 : 東亜電波工業製 HM-50S

遠心分離機 : 島津製作所製 CST-060LF

7.2 分析に使用した試薬

アセトニトリル : 和光純楽工業製 IIPLC用


アセトン: 和光純楽工業製試薬一級りん酸: 和光純薬工業製試薬特級炭酸水素ナトリウム: 和光純薬工業製試薬特級

ダンシルクロリド : 東京化成工業製 試薬特級

Fig.1 Chart of BOD

rig.i chart of bob	
Test No. 21377 (Test substance _	<u>K-1377</u>
Apparatus	· No. CM-40
Cultivating conditions: Regular conditions Concentration Test substance Reference substance(aniline) Activated sludge Temperature Duration Note: Regular test	100 (mg/Q) 100 (mg/Q) 30 (mg/Q) 25 ± 1°C

		BOD (mg)				
Vessel no.	Sample description	7thday	14thday	21stday	28thday	
(<u>1</u>	Sludge + Aniline	38.3	66.5	71.5	78.9	
2	Sludge + Test substance	1.0	2.7	4.1	5.5	
3	Sludge + Test substance	0.1	1.6	2.5	3.2	
4	Sludge + Test substance	0.7	2.2	3.1	5.0	
5	Water + Test substance	0.0	0.0	0.0	0.0	
6	Control blank [B]	1.5	4.9	5.7	5.9	

1999.09.30 Name