最終報告書

ジクロロメタンのコイにおける濃縮度試験

財団法人 化学品検査協会 化学品安全センター九州試験所

陳述書

財団法人 化学品検査協会 化学品安全センター九州試験所

試験委託者 通商産業省

試験の表題 ジクロロメタンのコイにおける濃縮度試験

·試験番号 50021

上記試験は、昭和59年3月31日付、環保業第39号、薬発第229号及び59基局 第85号による「新規化学物質に係る試験の項目等を定める命令第3条に規定する試験施 設に関する基準」に従って実施したものです。

昭和6/年3月28日

信頼性保証書

財団法人 化学品検査協会 化学品安全センター九州試験所

試験委託者 通商產業省

試験の表題 ジクロロメタンのコイにおける濃縮度試験

試験番号 50021

上記試験は財団法人化学品検査協会化学品安全センター九州試験所の信頼性保証部門が監査及び査察を実施しており、監査又は査察を行った日付並びに運営管理者及び試験責任者に報告を行った日付は以下の通りです。

監査又は	は査察日	報告日()	運営管理者)	報告日(試験責任者)				
昭和61年	2月 8日	昭和61年	2月 8日	昭和61年	2月 8日			
昭和61年	2月21日	昭和61年	2月24日	昭和61年				
昭和61年	3月 3日	昭和61年	3月 8日	昭和61年	3月 8日			
昭和61年	3月 6日	昭和61年	3月 6日	昭和61年	3月 6日			
昭和61年	3月 6日	昭和61年	3月 8日	昭和61年	3月 8日			
昭和61年	3月28日	昭和61年	3月28日	昭和61年	3月28日			

本最終報告書は、試験の方法が正確に記載されており、内容が試験計画及び標準操作手順に従い、かつ、生データを正確に反映していることを保証します。

昭和 6/年 3 月28日 信頼性保証業務担当者

昭和6/年3月28日 信頼性保証責任者

目 次

	頁
要	1
1.表 題	2
2. 試験委託者	2
3.試験施設	2
4.試験目的	2
5.試験方法	2
6. 試験期間	3
7. 試験関係者	3
8. 最終報告書の承認	3
9.被験物質	4
10. 急性毒性試験	6
11. 濃縮度試験の実施	8
12. 試験結果	16
13. 試資料の保管	17
14. 備· 考	17
15. 表の内容	19
16. 図の内容	20
付表及び付図	

要 約

1. 試験の表題

ジクロロメタンのコイにおける濃縮度試験

2. 試験条件

2.1 急性毒性試験

(1) 供 試 魚 ヒメダカ

(2) ばく露期間 48時間

(3) ばく露方法 半止水式(8~16時間毎に換水)

2.2 濃縮度試験

(1) 供 試 魚 コイ

(2) 試験濃度 第1濃度区 25048/2

第2濃度区 25/8/2

(3) ばく露期間 6週間

(4) ばく露方法 連続流水式

(5) 分析方法 ガスクロマトグラフー質量分析法

3. 試験結果

(1) 48時間LC50値 331概/化

(2) 濃縮 倍率 第1 濃度区 2.0倍 ~ 5.4倍 第2 濃度区 6.4倍以下~40 倍

4. 被験物質の安定性

被験物質は保管条件下及び試験条件下で安定であることを確認した。

最終報告書

試験番号 50021 (

- 1.表 題 ジクロロメタンのコイにおける濃縮度試験
- 2. 試験委託者 名 称 通商産業省
 - 住 所 (〒100)東京都千代田区霞が関一丁目3番1号
- 3. 試験施設 名 称 財団法人 化学品検査協会 化学品安全センター九州試験所
 - 住 所 (〒830)福岡県久留米市中央町19-14 TEL (0942)34-1500

運営管理者

4. 試験目的 ジクロロメタンのコイにおける濃縮性の程度について知見を得る。

5. 試験方法 「新規化学物質に係る試験の方法について」(環保業第5号、薬発第615号、49基局第392号 昭和49年7月13日)に規定する〈魚介類の体内における化学物質の濃縮度試験〉による。

6. 試験期間

- (1) 試験開始日 昭和61年 2月 8日
- (2) 試験実施期間

供試魚受入日 昭和60年11月25日

じゅん化終了日 昭和60年12月27日

ばく露開始日 昭和61年 2月 9日

ばく露終了日 昭和61年 3月24日

(3) 試験終了日 昭和61年 3月28日

7. 試験関係者

試験責任者

試験担当者

飼育管理責任者

急性毒性試験担当者

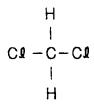
試資料管理責任者

最終報告書作成者

昭和61年 3月28日

8. 最終報告書の承認

試験責任者


昭和6 年 3 月 28日

氏 名

9.被験物質

- 9.1 名 称 ジクロロメタン (被験物質番号 K-21)
- 9.2 構造式等

構造式

分子式 CH2Cl2

分子量 84.93

- 9.3 軸 度*1 99%以上
 - *1 孫付資料による。
- 9.4 入手先及びロット番号
 - (1) 入 手 先

(2) ロット番号 FBW01

試滋)

9.5 同 定

■ に記載の赤外吸収スペクトルと当試験所の当該測定スペクト ルとが一致することを確認した。

9.6 物理化学的性状

外 観 無色透明液体 沸 点*¹ 38.5~40.5℃

比 重*1 d20 1.322~ 1.326

溶解性 7.98/2 水

> ヘキサン 100g/e以上 1008/0以上 クロロホルム 100g/以上 酢酸エチル メタノール 1008/8以上

質量スペクトル (図-13参照) 赤外吸収スペクトル (図-14参照) 核磁気共鳴スペクトル (図-15参照)

*1 添付資料による。

9.7 保管条件及び保管条件下での安定性

(1) 保管条件 冷暗所

(2) 安定性確認 ばく露開始前及び終了後に被験物質の赤外吸収スペクトル

を測定した結果、両スペクトルは一致し、保管条件下で安

定であることを確認した(図-14参照)。

9.8 試験条件下での安定性

ばく露開始前に予備検討を行い、試験条件下で安定であることを確認した。

10. 急性毒性試験

10.1 試験方法

JIS K 0102-1981 の 55 の方法に準じて行った。

10.2 供試魚

- (1) 魚 ヒメダカ Oryzias latipes
- (2) 供給 洍 中島養魚場

(住所 〒 869-01 熊本県玉名郡長洲町大明神)

(3) 蓄養条件

期間等 魚の入手時に目視観察をして異状のあるものを除去し、

蓄養槽で薬浴後、流水状態で3日間飼育した。

薬 浴 20個/化エルバージュ(上野製薬製)溶液及び78/化

塩化ナトリウム溶液を用いて止水状態で24時間薬浴を

行った。

じゅん化槽でじゅん化し、その間異状のあるものは除去 (4) じゅん化条件

し、最終的には25±2℃の水温の流水状態で7日間以

上飼育した。

平均 0.208 (5) 体 重

(6) 全 長

平均 3.0 cm 田端健二*2の方法に準じ、塩化第二水銀検定合格魚と同 (7) 検 定

ーロット (TFO-860214) のものを試験に供し

た。

*2 用水と廃水、14,1297-1303 (1972)

10.3 試験用水

(1)種類

九州試験所敷地内で揚水した地下水

(2) 分析及び水質確認

当試験所にて水温、pH及び溶存酸素は連続測定を行った。また、化学的酸素要求量、全硬度、蒸発残留物、塩素イオン及びアンモニア態窒素並びに有機リン、シアンイオン、重金属等の有害物質は6ヶ月に1回定期的に分析している。試験に供した用水は、分析した項目が水産環境水質基準(社団法人 日本水産資源保護協会 昭和47年3月)に記載されている濃度以下であることを確認した。

10.4 試験条件

(1) 試験水槽 ガラス製ガロンビン

(2) 試験液量 3.851×2/濃度区

(3) 試験水温 25±2℃

(4) 溶存酸素濃度 はく露開始時 8.1 ペ/ℓ

ばく露終了時 5.0~6.5個/ℓ

(5) pH ばく露開始時 8.2~8.3

ばく露終了時 7.7~8.1

(6) 供 試 魚 数 10尾/濃度区

(7) ばく露期間 48時間

(8) ばく露方法 半止水式(8~16時間毎に換水)

10.5 原液調製法

(1) 分 散 剤ジメチルスルホキシド

(2) 調製方法

被験物質を10倍量のジメチルスルホキシドに溶解した後、イオン交換水に分散させ原液を調製した。

10.6 試験の実施

(1) 実 施 場 所 LC50測定室

(2) 試験実施日 昭和61年 3月 5日 ~ 昭和61年 3月 8日

- 10.7 48時間LC50値の算出 Doudoroff 法で行った。
- 10.8 試験結果

48時間LC50値

331嗎/(図-3参照)

11. 濃縮度試験の実施

- 11.1 供試魚
 - (1) 魚 種 コイ Cyprinus carpio
 - (2) 供給源 杉島養魚場

(住所 〒 866 熊本県八代市郡築1番町 123-2)

(3) 蓄養条件

期間等無の入手時に目視観察をして異状のあるものを除去し、

受入槽で薬浴後、流水状態で7日間飼育した。

薬 浴 50~8/2水産用テラマイシン散(台糖ファイザー製)

溶液及び78/0塩化ナトリウム溶液を用いて止水状態で

24時間薬浴を行った。

(4) じゅん化条件 じゅん化槽でじゅん化し、その間異状のあるものは除去

し、最終的には25±2℃の水温の流水状態で19日間 飼育した。さらに試験水槽へ移し、同温度の流水状態で

7日間以上飼育した。

(5) ばく露開始時の体重、体長等*3

体 重 平均 20.08

体 長 平均 9.2cm

脂質含有率 平均 4.6%

*3 ロット (TFC-851125) の測定値

(6) 餌 料

種 類 コイ用ペレット状配合飼料

製 造 元 日本配合飼料株式会社

給 餌 方 法 供試魚体重の約2%相当量を1日2回に分けて給餌した。

ただし、供試魚の採取前日は給餌を止めた。

11.2 試験用水

10.3に同じ。

11.3 試験及び環境条件

- (1) 試験水供給方法 当試験所組立流水式装置を用いた。
- (2) 試験水槽 1001 容ガラス製水槽(揮発性化学物質用試験水槽)
- (3) 試験水量 原液2 配/分及び試験用水800 配/分の割合で 1155 1/日を試験水槽に供した。
- (4) 試験温度 25±2℃
- (5) 溶存酸素濃度 第1濃度区 5.9~6.6~8/ℓ(図-11参照) 第2濃度区 6.0~6.8~8/ℓ(図-12参照)
- (6) 供 試 魚 数 12尾/濃度区(ばく露開始時)
- (7) ばく露期間 6週間
- (8) 実 施 場 所 第2アクアトロン室

11.4 原液調製法

10.5と同様な方法で、第1濃度区用の場合100kg/ℓ及び第2濃度区用の場合10kg/ℓの原液を調製した。

11.5 試験濃度

48時間LC50予備値及び被験物質の分析感度を考慮して、

第1濃度区

250 MB/R

第2濃度区

2548/1

に設定した。

11.6 試験水及び供試魚分析

11.6.1 分析回数

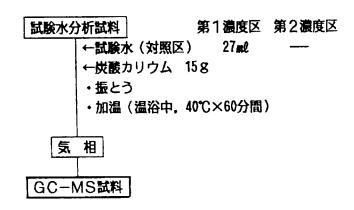
試験水分析は両濃度区ともはく露期間中、毎週2回計12回行い、1回当りの分析試料は1点とした。また、供試魚分析は両濃度区ともばく露開始後、2,3,4及び6週の計4回行い、1回当りの分析試料は2尾とした。

11.6.2 分析試料の前処理

(1) 試験水

試験水槽から

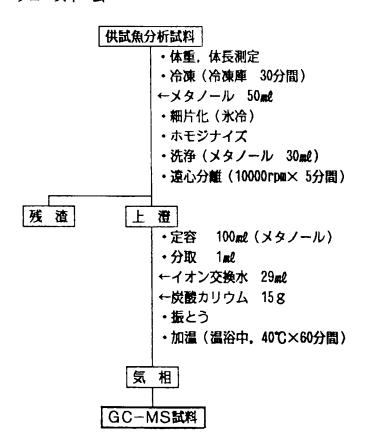
第1濃度区


3 1

第2濃度区

30ml

を採取し、以下のフロースキームに従ってヘッドスペース法において前処理操作を行い、気相をガスクロマトグラフー質量分析(GC-MS)試料とした。


フロースキーム

(2) 供試魚

試験水槽から供試魚を採取し、以下のフロースキームに従ってヘッドスペース法において前処理操作を行い、気相をGC-MS試料とした。

フロースキーム

11.6.3 定量分析

11.6.2の前処理を行って得られたGC-MS試料は、以下の条件に基づき ガスクロマトグラフー質量分析法により定量を行った。供試魚分析の定量は、 GC-MS試料を適宜希釈し、直線性の確認された濃度範囲になるように被験 物質濃度を調製した。最終定容液中の被験物質濃度は、マスフラグメントグラ ム上の被験物質のピーク高さを濃度既知の標準溶液のピーク高さと比較し、比 例計算して求めた(表-4,5,図-6,表-8,9,図-9,10参照)。

(1) 分析機器の定量条件

73 VI VM HILL 12 AC.		
機	器	ガスクロマトグラフー質量分析計
GC条件		
カラ	ム	2m×3㎜φ ガラス製
液	相	10% OV-101
担	体	クロモソルプW(HP)
カラム温	度	60°C
試料導入部溫	度	150℃
キャリアガ	ス	ヘリウム
流	量	4 O m2/min
注 入	量	200 ll
質量分析計条件	Ė	
セパレーター	- 温度	280℃
イオン化	電圧	70eV
イオン源	温 度	250℃
測定m	1/z	8 4

(2) 標準溶液の調製

分析試料中の被験物質濃度を求めるための標準溶液の調製は次のように行った。

・試験水分析

被験物質7.5 Mを精秤し、ジメチルスルホキシドに溶解した1008/lの標準原液を、さらにイオン交換水で希釈して10/8Mlの標準溶液を調製し、これを75/LL、イオン交換水30ml、炭酸カリウム158をバイアルびんに入れて、ヘッドスペース標準25/8/LLにした。

• 供試魚分析

被験物質75以を精秤し、メタノールに溶解した1000以他の標準原液を、さらにメタノールで希釈して10以他の標準溶液を調製し、これを75以、イオン交換水30収、炭酸カリウム158をバイアルびんに入れて、ヘッドスペース標準25円配配にした。

(3) 検量線の作成

(2) の標準溶液調製法と同様にして12.5,25及び50 Relation 標準溶液を調製し、これらを(1) の定量条件に従って分析し、得られたそれぞれのマスフラグメントグラム上の被験物質ピーク高さと濃度より検量線を作成した。

検量線より被験物質ピーク高さの測定限界値はノイズレベルを考慮して 100(被験物質濃度 1.1 を減)とした(図-4,7参照)。

11.6.4 回収試験及びプランク試験

(1) 方 法

前述した試験水及び供試魚分析操作における被験物質の回収率を求めるため、被験物質分散液を試験水(対照区)に添加及び魚体腹腔内に注射し、11.6.2及び11.6.3の操作に準じて回収試験を行った。また、被験物質を加えない試験水(対照区)及び魚体について、回収試験の場合と同じ操作によりプランク試験を行った。回収試験及びプランク試験は、2点について測定した。この結果、プランク試験においてマスフラグメントグラム上、被験物質ピーク位置にはピークは認められなかった。回収率は回収試験で得られた2点の値の平均値とした(表一3,7,図-5,8参照)。分析操作における回収率は以下のとおりであり、分析試料中の被験物質濃度を求める場合の補正値とした。

(2) 結 果

分析操作における回収率 試験水分析(被験物質 0.75μ8添加) 104 % 供試魚分析(被験物質 75μ8添加) 77.2%

11.6.5 分析試料中の被験物質濃度の算出及び検出限界

(1) 試験水分析試料中の被験物質濃度の算出

表-6の計算式に従って計算し、計算結果は JIS Z 8401-1961の方法を用いて有効数字3ケタに丸めて表示した。

(2) 試験水中の被験物質の検出限界濃度

11.6.3 (3)の検量線作成で求めた被験物質の測定限界値より、試験水中の 被験物質の検出限界濃度*4
はそれぞれ、

第1濃度区

11 78/10

第2濃度区

1. 1 ns/me

と算出される。

(3) 供試魚分析試料中の被験物質濃度の算出

表-10の計算式に従って計算し、計算結果は JIS Z 8401-1961の方法を 用いて有効数字3ケタに丸めて表示した。

(4) 供試魚中の被験物質の検出限界濃度

11.6.3 (3)の検量線作成で求めた被験物質の測定限界値より、供試魚中の被験物質の検出限界濃度*4は供試魚体重を308としたとき150kg/8と算出される。

*4 被験物質検出限界濃度(心臓又は心/8)=
$$\frac{A}{100} \times \frac{C \times E}{D}$$

A: 検量線上測定限界濃度(18/m2)

B: 回収率(%)

○ : 試験水採取量(心)又は供試魚体重(8)

D : 最終液量(ml)

E: 分取比

計算結果は JIS Z 8401-1961の方法を用いて有効数字 2 ケタに丸めた。

11.7 **濃縮倍率**(BCF)の算出

表-10の計算式に従って計算し、計算結果は JIS Z 8401-1961の方法を用いて有効数字2ケタに丸めて表示した。

なお、11.6.5 (4)で求めた供試魚中の被験物質検出限界濃度より、下記の倍率を越えて濃縮されたとき濃縮倍率の算出が可能となる。

第1濃度区

0.6倍

第2濃度区

6.4倍

12. 試験結果

12.1 試験水中の被験物質濃度

試験水中の被験物質濃度を表-1に示す。

表-1 試験水中の被験物質濃度(ばく露開始時からの測定値の平均値)

(単位 JR/L)

	2	週	3	週	4	週	6	週	付	表	付	X
第1濃度区	241		239		236		242		表-	- 4	57	.
第2濃度区	22.	4	22	. 2	22	1 -	23	. 4	表-	- 5	⊠-	- б

12.2 濃縮倍率

濃縮倍率を表-2に示す。

表-2 濃縮倍率

	2	週	3	週	4	週	6	週	付	表	付	Ø
第1濃度区	2.0 2.4		3.6 5.4		2.1 2.6	-	4.6 4.9		表-	-8	⊠-	-9
第2濃度区	6. 41 6. 41		36 37		11 11		38 40		表-	-9	⊠-	-10

表-2の濃縮倍率とばく露期間との相関を図-1及び図-2に示した。これらの図より、6週後には十分平衡に達していると考えられる。また、被験物質のコイに対する濃縮性の程度は、濃縮倍率で第1濃度区において2.0倍~5.4倍、第2濃度区において6.4倍以下~40倍であり、両濃度区における濃縮性の程度はほぼ同じと考えられる。

供試魚は外観観察等の結果、異常は認められなかった。

また、試験水中の平均被験物質濃度は表-1に示されるように、設定値の90%以上が保持された。

13. 試資料の保管

13.1 被験物質

保管用被験物質約208を保管用容器に入れ密栓後、「新規化学物質に係る試験の項目等を定める命令第3条に規定する試験施設に関する基準」(以下「試験施設基準」という。)第32条に定める期間、当試験所試料保管室に保管する。

13.2 生データ、資料等

試験により得られた分析結果、測定結果、観察結果、その他試験ノート等最終報告書の作成に用いた生データ、試験計画書、調査表、資料等は最終報告書と共に、「試験施設基準」第32条に定める期間、当試験所資料保管室に保管する。

14. 備 考

- 14.1 試験に使用した機器、装置、特殊器具、試薬等
 - (1) 試験系 (飼育施設) に係わる装置

原液供給用微量定量ポンプ : 東京理化器械製 型 GHW 溶存酸素測定装置 : 飯島精密工業製 型 552

(2) 分析及び原液調製に使用した機器、装置、特殊器具、試薬 機器

ガスクロマトグラフー質量分析計: 島津製作所製

型 GCHS-QP1000

装置

ロータリーエバポレーター : 東京理化器械製 型 N-1

振とう機 : 入江商会製 TS式

大洋科学工業製 型 SR-ⅡW

ホモジナイザー : キネマチカ社製

遠心分離機 : 日立製作所製 型 20PR-52 サーチミングー ・ 大学科学 エ製 DV 00

サーモミンダー : 大洋科学工業製 型 DX-80

特殊器具

アルミシールSタイプ: ガスクロ工業製バイアルびん(50配): ガスクロ工業製プチルゴムセプタム: ガスクロ工業製

マイクロシリンジ : テルモ製 型 MS-100

テドラーバック : 井内盛米堂製

薬温

炭酸カリウム(一級):和光純薬工業製メタノール(特級):和光純薬工業製ジメチルスルホキシド(特級):半井化学薬品製