		ERRATA														
ID No.	Chemical Name	CAS RN	Hazard class	Classification	Symbol	Signal word	Hazard	Precautionary statement	INCORRECT Rationale for the classification	Classification	Symbol	Signal word	Hazard	Precautionary statement	Rationale for the classification	NOTE
R02-B-062- MHLW, MOI	2.2" [Isopropyliden ebis](2.6 dibromo' 4.1: phenylene)oxy] diethanol: Tetrabromobis phenol A bis(2: hydroxyethyl ether)	4162-45-2	Skin sensitization	Not classified	-	-	-	-		Classificatio n not possible	-	-	-	-		September, 2022
R02-B-062- MHLW, MOI	2.2 ¹ [Isopropyliden ebis](2.6 ⁻ dibromo ⁻ 4, 1 ⁻ phenylene)cay]]diethanol: Tetrabromobis phenol A bis(2 ⁻ hydroxyethyl ether)	4162-45-2	Specific target organ toxicity - Repeated exposure	Not classified	-	-	-	-	-	Classificatio n not possible	-	-	-	-	-	September, 2022
R02-B-020- MHLW, MOI	Methyl acrylate	96-33-3	Specific target organ toxicity - Single exposure	n/e	n/e	nie	nic	nie	Baticonic for the Classification] Based on O1 and Classification] Based on O1 and O2 (bere was information that irritation to the respiratory organs was descreed in humans. Based on O3 and (4), there was information that effects on the respiratory organs and longs were observed in experimential animals at dases within the range for Category 1 and Category 2. Therefore, it was classified in Category 1 (respiratory organs). With the addition of new informations sources (1) and (2), the classification result was changed from the previous classification. Floridence Data] (1) It was reported that in humans exposed by inhulation to this substance at 75 ppm (equivalent to C24 emgl.), critication to the syst, ness, and longs was observed (ACGIH (7h, 2014). (3) In an inhulation response the other paper expectively rest and corpurations was abserved (Initial Risk Assessment Report (NTFK, CERI, NEDO, 2008). (5) In an inhulation response to the syst, ness, and <i>L</i> of the 10 to 10.9 mg/L (within the range for Classify 1 to Category 2. At or above 13 mg/L (within the range for Category 1), there were death cases, and in the summals at sacrific (SAI (2000)). (4) In an inhulation, frequence in the substance with risk, dynama, dispiragmatic induced on the range for Category 1. At or above 13 mg/L (within the range for Category 1), there were death cases, and in the substance with risk, dynama, dispiragmatic induced on the range for Category 2. At or above 13 McI (2000).	n/c	nic	nle	níc	nie	Balancia for the Classification] Based on O1 and (2), there was information that irritation to the respiratory organs was descreted in humans. Based on O3 and (4), there was information that effects on the respiratory organs and hangs were observed in experimental animals at doses within the range for Category 1 and Category 2. Therefore, it was classified in Category 1 frequintary organs. With the addition of new information sources (1) and (2), the dassification result was changed from the previous classification. Evidence Data 1 (1) It was reported that in humans exposed by inhalation to this substance at 75 ppm fequivalent to C24 mg/L, rititation to the year, near, and hungs was observed (AGGIH 7th, 2014). (2) It was followed in the last of the substance at 70 ppm (550 mg/m3) and 10 are influent in the substance with the substance with range for Category 1. there were death cases, and in the animatic that dead, dilution and congestion of the substance of a substance with rats, divident and congestion thereas the substance with rats, dynamic and congestion of the substance with stat is the dilution and congestion of the substance with rats, dynamic, displayment is the substance with rats, dynamic, displayment is the substance, which were only in the substance with rats, dynamic, displaymentic the ratio of the cases, and in the animatic that dead, dilution and congestion displayment on the rates for Category 2. More the case is 1000 house the result, substance with the rates displayment of the result of the substance with rats, dynamic, displaymentic heating, where dearce in some of the minute at a carfied (S100). Substance minutes, and along playment in the rates for Category 2. OMAK (D70 (2019)).	September, 2023
R02-B-050- MHLW, MOI	0.0-Dimethyl O (4.14) trichlarophen y0 phosphorthio ate: Ronnel	299-84-3	Specific target organ tuxicity - Single exposure	Category 1 (nervous system, respiratory organs)	Hoalth Hazard	Danger	H370 : Causee damage to organs (nervous aystem, respiratory organs)	P208+P311: 1F exposed or concerned: Call a POISON CLAYTED by each breach and the concerned of the concerned and the concerned of the concerned handling. P201: Do not eat, drafts or smalls when using P201: Byoning P221: Specific treatment (see on this P201: Do not eat, drafts treatment (see on this P201: Do not eat, drafts treatment (see on this P301: Dispose of contents/container to	Rationale for the Classification] Rased on U to (4), it was classified in Category 1 (nervous system, respiratory organs). A new information source was used and the classification results were changed from the previous classification. Evidence Data] (1) Veterinarians who used this substance or other organophosphorus pesticides in poorly writistel awas dual masses, honducke, not information of the threat and facial skin writistel awas dual masses. The substance or other organophosphorus pesticides in poorly writistel awas dual masses. Jonatom and the substance of the threat and facial skin writistel awas dual masses. Jonatom and the substance of the threat and facial skin scenario of toxicity in humans are nauses, vaniting, addominal cramps, diarches, nearwise salvicium, headsche, dirationes, annual, devision, and addiction (BSDB) (2) Signs of toxicity in humans are difficulty in hreathing, excessive severtion (BSDB) (2) Signs of toxicity in humans are difficulty in hreathing, excessive severtion of aliva and preparatory tract muscs, sponsis, pursue breaches of the respiratory organs. May (4) Alter and Agnitistic respiration (BSDB) (Access on May 2000). (2) Endervence Data and scriptions along (BSDB (Access on May 2000). Endervence Data and scriptions used (BSDB (Access on May 2000). Endervence Data, red.] (3) Organophosphorus posticides, such as this substance, are absorbed by all rootes, requiring in inducing and the main absorption. The toxicological effects of the arganophosphorus posticides, such as this substance to the inhibition of acelychalinesterses in the arganophosphorus posticides, such as this substances, are absorbed by all rootes, requiring in inducing intervention in absorptions in the neuronuscider transmission	Category 1 (nervous system), Category 3 (Respirator y tract irritation)	Health Heard Exclamation mark	Danger Warning	H370 : Causes damage to organs system, variant regranol H333 : Mag respiratory irritation (respiratory tract irritation)	PEON-FIT11 IF exposed concerned Call a concerned Call a CENTERION CENTERION P201 : Do not beather dastfunctional participation with a property of the handling, person theoroughy after handling, person provide the product. P201 : Do not ast, their product. P201 : Do not ast, their person the product. P201 : Specific textiment desntheory person to fresh at rand person foreshab con- temportable for person to fresh at rand person to	Bationale for the Classification] Based on (1) and (2), there was information that irritation to the respiratory organs was observed in humans. Based on (3) and (4), there was information that effects on the expiratory organs and hange wave observed in respirant animals at these within the frequenticy organ.). With the addition of new information sources (1) and (2), the classification result was changed from the previous classification. Bividence Datal (1) Is was reported that in humans exposed by inhalation to this substance at 75 ppm fequivalent to 0.244 mg/L), irritation to the syse, ness, and hung was observed (AGCHI (7b, 2014). (2) It was reported that in humans exposed to this substance at 70 ppm (250 mg/M) irritations to the upper reprinterity rist at al onjmicritie was (2) In an inhalation exposure to to flus substance with rate, mice, and humg was observed (AGLH) the negression of the experiment of the system of the substance of the pm (250 mg/M) irritations to the upper reprinterity rist at all ongmicrities was (2) In an inhalation exposure tot of this substance with rate, mice, and humg was observed (1) In an inhalation exposure tot of this substance with rate, mice, and humg was observed (1) In an inhalation exposure tot of this substance with rate, mice, and humgten (1) In an inhalation relaxing the minimal at arcrifice (3) DB baseler (2003). (1) In an inhalation prove dist charges provide the substance with rate, disting, and negativity hang were observed in sum of the animals at arcrifice (3) DB baseler (2003). (1) In an inhalation prevention of the animals at arcrifice (3) DB baseler (2003), and the rate of the substance with rate, disting and more substance was in prevention (1), prevention (1), thereor, and paragreent of models were observed at 10.5 mg/l, (within the range for Category 2) MAR DFG/ (2010).	September, 2023
R02-B-123- MHLW	2-tert-Batyl-5- (4-tert) butylbenzylthi o)-f-chiloro 3/211) pyridazione: Fyridažen	96489-71-3	Specific target organ toxicity - Repeated exposure	n/c	n/c	n/c	n/c	n/e	Biotennie fer ihe Classification: Biotennie fer ihe Classification: Biotennie fer Chestery 2 ever mainly body weight loss, and based on (7) and (8), on apparent target organ rank toxicity as observed either in the inhaliation or the dermal route, hat effects at a dose around the upper limit of Category 2 were unknown, and therefore, classification was not possible. Ervicience Datal (1) As a result of a 90 day test with rats dosed by freeding, reduced body weight gain in fermales at or above 65 ppm (males/fermales': $494/853$ mg/kg/day, within the range for Category 1), a decrease in food and water inlate in males and fermales, and fermales, and the range for Category 2: and increases in gammar 47 male HUX in males and fermales, and an increase in ALP and a decrease in gammar 40 male HUX in males and fermales, and an increase in ALP and a decrease in gammar 40 male HUX in males and fermales, and an increase in decrease in a strain the intervention of the strain and the strain the intervention beyort (Descinder) 400 dashyct commission of Japan, 2011. A posticle abstrate rank result of a 90 day test with mice dosed by feeding reduced body weight gain and a decrease in food dashyct commission of Japan, 2011. A posticle abstrate rank result of a 90 day test with mice dosed by feeding reduced body weight gain and a decrease in food dashyct commode discretions in HUX and a decrease in water in and decreases in food tintaks and a food discretion from least are above 20 ppm fmales/females': 2027 to family differences in decrease in MUX and a decrease in water in and decreases in food tintaks and food differency in males at decrease in water in and decreases in food tintaks and food differency in fundes/females at 2027 to family differences in decrease in dashyct differences in decrease in water in and decreases in food tintaks and a decrease in dashydt differences in dashyct and strates, and increases in ALP and AST in males, and decreases in hot for the ort on fundes/females at 2020 ppm fmala	n/c	n/c	nle	n/c	n/e	Batismule for the Classification] Based on U10 60, the reported effects by an oral administration to test animals within the range for Category 2 were mainly body weight loss, and based on (7) and (3), on apparent target organ toxicity was observed either in the inhaliation or the dermal route, bat effects at a done around the upper limit of Category 2 were unknown, and therefore, classification was not possible. Evidence Datal O1 As a result of a 90 day test with rats dosed by feeding, reduced body weight gain in females at or above 65 ppm (males/females' 4.04/5.33 mg/kg/day, within the range for Category 1). A deresse in fold and water induce in males and females, and females, and microsco in Galactic Category 2 and the second second second second second second weight gain in males at or above 155 ppm (males/females' 1.150/12.84 mg/kg/day, within the range for Category 2). And therease in gamma GT and HUX in males and females, and an increase in ALP and adversase in gamma GT and HUX in males and females, and an increase in Gala day acts at above 90 ppm (males/females' fepatic) (Vod Safsty Counsission of Japan, 2.11). A pesticle about at all evaluation report (Pod and Agricultural Materials Inspection Center, 2012). Canada decrease in fold efficiency in males at a above 90 ppm (males/females' 1.02714.65 mg/kg/day, within the range for Category 2): and indexesses in the IDI. A pesticide second in and decreases in fold efficiency in males at above 90 ppm (males/females' 1.02714.65 mg/kg/day, weight males, and decreases in the IDI and a decrease in water in males at 10 pm (males/females' 1.01714.65 mg/kg/day, coeeding Category 2): and day increases in ALP and AST in males, and decreases in hours at a decrease in fold intake, and increases in ALP and AST in males, and decreases in the for and platelet count in framelast at 3.000 are 10.100 to the triat of the sects an archiver 20 ppm fundee/females' 4.0004/3.11 males and decreases in for the sects and abover bearered (Sinne as above).	September, 2023